Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Dev Biol ; 497: 1-10, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841503

RESUMO

In amniote vertebrates, the definitive dorsal aorta is formed by the fusion of two primordial aortic endothelial tubes. Formation of the definitive dorsal aorta requires extensive cellular migrations and rearrangements of the primordial tubes in order to generate a single vessel located at the embryonic ventral midline. This study examines the role of VEGF signaling in the generation of the definitive dorsal aorta. Through gain- and loss-of-function studies in vivo in the chick embryo, we document a requirement for VEGF signaling in growth and remodeling of the paired primordia. We find that regions of the aorta are differentially sensitive to levels of VEGF signaling, and present evidence that areas of low blood flow are more sensitive to the loss of VEGF signaling. We also find that VEGF signaling regulates the intracellular distribution between membrane and cytoplasm of the cell-cell adhesion molecule VE-cadherin in aortic endothelial cells in vivo. Together, these finding identify mechanisms that likely contribute to the dynamic behavior of endothelial cells during aorta morphogenesis.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Embrião de Galinha , Animais , Caderinas/fisiologia , Morfogênese , Endotélio Vascular
2.
J Mater Chem B ; 10(26): 4959-4966, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730726

RESUMO

The emergence of synthetic biology has opened new avenues in constructing cell-assembly biosystems with specific gene expression and function. The phenomena of cell spreading and detachment during tissue development and cancer metastasis are caused by surface tension, which in turn results from differences in cell-cell adhesion mediated by the dimerization of cadherin expressed on the cell surface. In this study, E- and P-cadherin plasmids were first constructed based on the differential adhesion hypothesis, then they were electroporated into K562 cells and HEK293T cells, respectively, to explore the process of cell migration and assembly regulated by cadherins. Using this approach, some special 3D cell functional components with a phase separation structure were fabricated successfully. Our work will be of potential application in the construction of self-assembling synthetic tissues and organoids.


Assuntos
Caderinas , Antígenos CD/fisiologia , Caderinas/metabolismo , Caderinas/fisiologia , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células HEK293 , Humanos , Células K562 , Plasmídeos
3.
PLoS One ; 17(3): e0264622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239721

RESUMO

Eosinophilic Esophagitis (EoE) is an antigen-triggered inflammatory condition of the esophageal lining characterized by eosinophilic infiltration. EoE is associated with significant remodeling, and although this remodeling is reversed by current treatment regimens, symptoms of EoE and associated remodeling reappear upon cessation of therapies. We hypothesized that structural remodeling of cell-cell adhesion is a key factor in the pathogenesis of EoE and that epithelial to mesenchymal transition (EMT) was a viable molecular process to lead to this remodeling. Endoscopically obtained biopsy samples from 18 EoE and 18 control pediatric patients were evaluated by transmission electron microscopy to measure intercellular spaces (IS) between cells. Biopsy samples from all groups were analyzed for cellular levels of cell-cell adhesion proteins: E-cadherin, zonula occludens associated protein-1 (ZO-1), and N-cadherin. We also analyzed for cellular levels and localization two of transcription factors, Twist1 and ß-catenin, that are associated with promoting EMT. The IS was significantly increased in the EoE group compared to the control. We observed a significant decrease in E-cadherin and ZO-1 levels and a concomitant increase in N-cadherin levels in EoE samples compared to control. Further, while there was no significant change in cellular levels of ß-catenin, we observed an altered localization of the protein from the cell membrane in control tissue to a nuclear/perinuclear localization in EoE. We observed higher levels of the transcription factor Twist1 in the EoE group compared to normal which was localized mainly at the nucleus. Our results suggest that the integrity of normally sealed esophageal epithelia is compromised in the EoE patients compared to control subjects, and this is due to alterations in the expression of cell adhesion molecules at the esophageal epithelium. Our data also suggest that EMT, potentially regulated by transcription factors ß-catenin and Twist1, may be responsible for the molecular alteration which leads to the remodeling of esophageal epithelia in EoE.


Assuntos
Esofagite Eosinofílica , Transição Epitelial-Mesenquimal , Proteínas Nucleares , Proteína 1 Relacionada a Twist , beta Catenina , Caderinas/fisiologia , Criança , Esofagite Eosinofílica/patologia , Humanos , Proteínas Nucleares/fisiologia , Proteína 1 Relacionada a Twist/fisiologia , beta Catenina/fisiologia
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165179

RESUMO

Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L. Maître et al., Science 338, 253-256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension-stabilizing E-cadherin-actin complexes at the contact.


Assuntos
Caderinas/metabolismo , Células Germinativas/fisiologia , Células-Tronco/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Caderinas/fisiologia , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Citoesqueleto/fisiologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Peixe-Zebra/metabolismo , alfa Catenina/metabolismo
5.
Prog Neurobiol ; 208: 102177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582949

RESUMO

The tangential migration of immature neurons in the postnatal brain involves consecutive migration cycles and depends on constant remodeling of the cell cytoskeleton, particularly in the leading process (LP). Despite the identification of several proteins with permissive and empowering functions, the mechanisms that specify the direction of migration remain largely unknown. Here, we report that planar cell polarity protein Celsr3 orients neuroblasts migration from the subventricular zone (SVZ) to olfactory bulb (OB). In Celsr3-forebrain conditional knockout mice, neuroblasts loose directionality and few can reach the OB. Celsr3-deficient neuroblasts exhibit aberrant branching of LP, de novo LP formation, and decreased growth rate of microtubules (MT). Mechanistically, we show that Celsr3 interacts physically with Kif2a, a MT depolymerizing protein and that conditional inactivation of Kif2a in the forebrain recapitulates the Celsr3 knockout phenotype. Our findings provide evidence that Celsr3 and Kif2a cooperatively specify the directionality of neuroblasts tangential migration in the postnatal brain.


Assuntos
Caderinas , Cinesinas , Células-Tronco Neurais , Neurogênese , Receptores de Superfície Celular , Proteínas Repressoras , Animais , Caderinas/fisiologia , Movimento Celular/fisiologia , Cinesinas/fisiologia , Ventrículos Laterais/metabolismo , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Receptores de Superfície Celular/fisiologia , Proteínas Repressoras/fisiologia
6.
Anticancer Drugs ; 33(1): e103-e112, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407043

RESUMO

In our previous studies, we found that T24 lung metastatic cancer cells showed high invasion and metastasis abilities and cancer stem cell characteristics compared with T24 primary cancer cells. By screening for the expression of CXC chemokines in both cell lines, we found that CXCL5 is highly expressed in T24-L cells. The aim of this study is to shed light on the relationship of CXCL5 with epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). RNAi technology was used to decrease CXCL5 expression in the T24-L cell line, and the EMT and CSCs of the shCXCL5 group and the control group were compared. The CXCR2 inhibitor SB225002 was used to inhibit the receptor of CXCL5 to determine the effect of the CXCL5/CXCR2 axis. The knockdown of CXCL5 expression in T24-L cells reduced their EMT and CSC characteristics. RT-PCR and Western blot analyses revealed the downregulation of N-cadherin, Vimentin and CD44. In addition, when CD44 expression was knocked down, the EMT ability of the cells was also inhibited. This phenomenon was most pronounced when both CXCL5 and CD44 were knocked down. CXCL5 and CD44 can affect the EMT and stem cell capacity of T24-L cells through some interaction.


Assuntos
Quimiocina CXCL5/genética , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/patologia , Neoplasias da Bexiga Urinária/secundário , Caderinas/fisiologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Vimentina/fisiologia
7.
Annu Rev Pathol ; 17: 47-72, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425055

RESUMO

Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.


Assuntos
Desmocolinas , Desmossomos , Caderinas/fisiologia , Adesão Celular/fisiologia , Desmossomos/fisiologia , Humanos , Transdução de Sinais
8.
Heart Surg Forum ; 24(4): E764-E768, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34473045

RESUMO

BACKGROUND: Hypoxia induced injury of pulmonary microvascular endothelial barrier is closely related to the pathogenesis of acute lung injury after lung transplantation. VE-cadherin is an important structural molecule for pulmonary microvascular endothelial barrier. In this study, we aim to investigate the roles of VE-cadherin in hypoxia induced injury of pulmonary microvascular endothelial barrier. METHODS: Rat model of hypoxia and cultured pulmonary microvascular endothelial cells (PMVECs) were utilized. Determination of PMVECs apoptosis, skeleton combination was conducted to verify the effects of hypoxia on injury of pulmonary microvascular endothelial barrier. In addition, VE-cadherin expression was modulated by administration of siRNA in order to investigate the roles of VE-cadherin in hypoxia induced PMVECs apoptosis and skeleton recombination. RESULTS: Our data indicated that expression of VE-cadherin was down-regulated in hypoxia-exposed PMVECs. Whereas, in the cells treated using siRNA, down-regulation of VE-cadherin did not trigger PMVECs apoptosis, but it increased the sensitivity of PMVECs to the hypoxia induced apoptosis. In cases of hypoxia, the expression of VE-cadherin was significantly down-regulated, together with endothelial skeleton recombination and increase of permeability, which then triggered endothelial barrier dysfunction. CONCLUSIONS: These data verify that VE-cadherin expression played an important role in hypoxia induced PMVECs apoptosis and cellular skeletal recombination.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Antígenos CD/fisiologia , Caderinas/fisiologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Microcirculação , Circulação Pulmonar , Animais , Apoptose , Permeabilidade da Membrana Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/patologia , Hipóxia , Masculino , Ratos Sprague-Dawley
9.
Mol Neurobiol ; 58(11): 5564-5580, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34365584

RESUMO

Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration leading to various pathological complications such as motor and sensory (visual) deficits, cognitive impairment, and depression. N-3 polyunsaturated fatty acid (n-3 PUFA) containing lipids are known to be anti-inflammatory, whereas the sphingolipid, ceramide (Cer), is an inducer of neuroinflammation and degeneration. Using Fat1+-transgenic mice that contain elevated levels of systemic n-3 PUFA, we tested whether they are resistant to mild TBI-mediated sensory-motor and emotional deficits by subjecting Fat1-transgenic mice and their WT littermates to focal cranial air blast (50 psi) or sham blast (0 psi, control). We observed that visual function in WT mice was reduced significantly following TBI but not in Fat1+-blast animals. We also found Fat1+-blast mice were resistant to the decline in motor functions, depression, and fear-producing effects of blast, as well as the reduction in the area of oculomotor nucleus and increase in activated microglia in the optic tract in brain sections seen following blast in WT mice. Lipid and gene expression analyses confirmed an elevated level of the n-3 PUFA eicosapentaenoic acid (EPA) in the plasma and brain, blocking of TBI-mediated increase of Cer in the brain, and decrease in TBI-mediated induction of Cer biosynthetic and inflammatory gene expression in the brain of the Fat1+ mice. Our results demonstrate that suppression of ceramide biosynthesis and inflammatory factors in Fat1+-transgenic mice is associated with significant protection against the visual, motor, and emotional deficits caused by mild TBI. This study suggests that n-3 PUFA (especially, EPA) has a promising therapeutic role in preventing neurodegeneration after TBI.


Assuntos
Sintomas Afetivos/prevenção & controle , Concussão Encefálica/sangue , Caderinas/fisiologia , Ácidos Graxos Ômega-3/sangue , Traumatismos Cranianos Fechados/sangue , Transtornos dos Movimentos/prevenção & controle , Transtornos da Visão/prevenção & controle , Sintomas Afetivos/sangue , Sintomas Afetivos/etiologia , Animais , Química Encefálica , Concussão Encefálica/complicações , Concussão Encefálica/psicologia , Caderinas/genética , Ceramidas/biossíntese , Depressão/sangue , Depressão/etiologia , Depressão/prevenção & controle , Resistência à Doença , Ácidos Graxos Ômega-3/fisiologia , Medo , Feminino , Traumatismos Cranianos Fechados/complicações , Traumatismos Cranianos Fechados/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/etiologia , Doenças Neuroinflamatórias , Teste de Campo Aberto , Estresse Oxidativo , Proteínas Recombinantes/metabolismo , Esfingolipídeos/análise , Esfingomielina Fosfodiesterase/análise , Transtornos da Visão/sangue , Transtornos da Visão/etiologia
10.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34078741

RESUMO

The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Antígenos CD/genética , Medula Óssea/metabolismo , Caderinas/genética , Caderinas/fisiologia , Conexina 43/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral/fisiologia
11.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946207

RESUMO

Persistent injury and the following improper repair in bronchial epithelial cells are involved in the pathogenesis of airway inflammation and airway remodeling of asthma. E-cadherin (ECAD) has been shown to be involved in airway epithelium injury repair, but its underlying mechanisms to this process is poorly understood. Here, we describe a previously undetected function of ECAD in regulating the balance of EMT and MET during injury repair. Injury in mice and human bronchial epithelial cells (HBECs) was induced by successive ozone stress for 4 days at 30 min per day. ECAD overexpression in HBECs was induced by stable transfection. EMT features, transforming growth factor beta1 (TGF-ß1) secretion, transcriptional repressor Snail expression, and ß-catenin expression were assayed. Ozone exposure and then removal successfully induced airway epithelium injury repair during which EMT and MET occurred. The levels of TGF-ß1 secretion and Snail expression increased in EMT process and decreased in MET process. While ECAD overexpression repressed EMT features; enhanced MET features; and decreased TGF-ß1 secretion, Snail mRNA level, and ß-catenin protein expression. Moreover, activating ß-catenin blocked the effects of ECAD on EMT, MET and TGF-ß1 signaling. Our results demonstrate that ECAD regulates the balance between EMT and MET, by preventing ß-catenin to inhibit TGFß1 and its target genes, and finally facilitates airway epithelia repair.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Caderinas/farmacologia , Caderinas/fisiologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Animais , Linhagem Celular , Células Epiteliais/citologia , Epitélio/lesões , Regulação da Expressão Gênica , Humanos , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Ozônio/efeitos adversos , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
12.
J Invest Dermatol ; 141(11): 2577-2586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862069

RESUMO

The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2+) and E-cadherin‒mediated processes in the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2+ signal propagation in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline cytosolic Ca2+ concentrations were higher, and capacitive Ca2+ entry was lower in aged than in young keratinocytes. As in Casr-knockout mice (EpidCaSR-/-), decreased CaSR expression led to decreased E-cadherin and phospholipase C-γ expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2+ propagation and E-cadherin organization after experimental wounding. These results suggest that age-related defects in CaSR expression dysregulate normal keratinocyte and epidermal Ca2+ signaling, leading to impaired E-cadherin expression, organization, and function. These findings show an innovative mechanism whereby Ca2+- and E-cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by restoring CaSR function.


Assuntos
Sinalização do Cálcio/fisiologia , Adesão Celular/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Envelhecimento da Pele/fisiologia , Idoso de 80 Anos ou mais , Animais , Caderinas/fisiologia , Células Cultivadas , Humanos , Camundongos , Receptores de Detecção de Cálcio/agonistas , Molécula 1 de Interação Estromal/análise
13.
Mol Biol Cell ; 32(10): 1033-1047, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788621

RESUMO

The formation of an epithelial tube is a fundamental process for organogenesis. During Drosophila embryonic salivary gland (SG) invagination, Folded gastrulation (Fog)-dependent Rho-associated kinase (Rok) promotes contractile apical myosin formation to drive apical constriction. Microtubules (MTs) are also crucial for this process and are required for forming and maintaining apicomedial myosin. However, the underlying mechanism that coordinates actomyosin and MT networks still remains elusive. Here, we show that MT-dependent intracellular trafficking regulates apical constriction during SG invagination. Key components involved in protein trafficking, such as Rab11 and Nuclear fallout (Nuf), are apically enriched near the SG invagination pit in a MT-dependent manner. Disruption of the MT networks or knockdown of Rab11 impairs apicomedial myosin formation and apical constriction. We show that MTs and Rab11 are required for apical enrichment of the Fog ligand and the continuous distribution of the apical determinant protein Crumbs (Crb) and the key adherens junction protein E-Cadherin (E-Cad) along junctions. Targeted knockdown of crb or E-Cad in the SG disrupts apical myosin networks and results in apical constriction defects. Our data suggest a role of MT- and Rab11-dependent intracellular trafficking in regulating actomyosin networks and cell junctions to coordinate cell behaviors during tubular organ formation.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Microtúbulos/fisiologia , Glândulas Salivares/embriologia , Proteínas rab de Ligação ao GTP/fisiologia , Citoesqueleto de Actina/fisiologia , Actomiosina/fisiologia , Animais , Transporte Biológico , Caderinas/fisiologia , Proteínas de Drosophila/genética , Dineínas/fisiologia , Gastrulação , Técnicas de Silenciamento de Genes , Junções Intercelulares/fisiologia , Miosinas/fisiologia , Proteínas Nucleares/fisiologia , Proteínas rab de Ligação ao GTP/genética
14.
J Biol Chem ; 296: 100433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610554

RESUMO

Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.


Assuntos
Adesão Celular/fisiologia , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Caderinas/metabolismo , Caderinas/fisiologia , Adesão Celular/genética , Distroglicanas/metabolismo , Glicômica , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Manose/química , Distrofias Musculares/genética , N-Acetilglucosaminiltransferases/fisiologia , Polissacarídeos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Int J Mol Sci ; 21(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158211

RESUMO

Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.


Assuntos
Caderinas/fisiologia , Fertilidade/fisiologia , Gônadas/crescimento & desenvolvimento , Reprodução/fisiologia , Animais , Feminino , Fertilidade/genética , Gametogênese/genética , Células Germinativas/fisiologia , Gônadas/embriologia , Humanos , Masculino , Morfogênese/genética , Reprodução/genética
16.
PLoS Biol ; 18(11): e3000946, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253145

RESUMO

Inflammation of the central nervous system (CNS) induces endothelial blood-brain barrier (BBB) opening as well as the formation of a tight junction barrier between reactive astrocytes at the Glia Limitans. We hypothesized that the CNS parenchyma may acquire protection from the reactive astrocytic Glia Limitans not only during neuroinflammation but also when BBB integrity is compromised in the resting state. Previous studies found that astrocyte-derived Sonic hedgehog (SHH) stabilizes the BBB during CNS inflammatory disease, while endothelial-derived desert hedgehog (DHH) is expressed at the BBB under resting conditions. Here, we investigated the effects of endothelial Dhh on the integrity of the BBB and Glia Limitans. We first characterized DHH expression within endothelial cells at the BBB, then demonstrated that DHH is down-regulated during experimental autoimmune encephalomyelitis (EAE). Using a mouse model in which endothelial Dhh is inducibly deleted, we found that endothelial Dhh both opens the BBB via the modulation of forkhead box O1 (FoxO1) transcriptional activity and induces a tight junctional barrier at the Glia Limitans. We confirmed the relevance of this glial barrier system in human multiple sclerosis active lesions. These results provide evidence for the novel concept of "chronic neuroinflammatory tolerance" in which BBB opening in the resting state is sufficient to stimulate a protective barrier at the Glia Limitans that limits the severity of subsequent neuroinflammatory disease. In summary, genetic disruption of the BBB generates endothelial signals that drive the formation under resting conditions of a secondary barrier at the Glia Limitans with protective effects against subsequent CNS inflammation. The concept of a reciprocally regulated CNS double barrier system has implications for treatment strategies in both the acute and chronic phases of multiple sclerosis pathophysiology.


Assuntos
Barreira Hematoencefálica/fisiologia , Barreira Hematoencefálica/fisiopatologia , Junções Aderentes/patologia , Junções Aderentes/fisiologia , Animais , Antígenos CD/genética , Antígenos CD/fisiologia , Astrócitos/patologia , Astrócitos/fisiologia , Caderinas/genética , Caderinas/fisiologia , Permeabilidade Capilar/genética , Permeabilidade Capilar/fisiologia , Claudina-5/genética , Claudina-5/fisiologia , Regulação para Baixo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Feminino , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Neuroglia/patologia , Neuroglia/fisiologia , Junções Íntimas/patologia , Junções Íntimas/fisiologia
17.
Sci Rep ; 10(1): 19930, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199802

RESUMO

The intestine interacts with many factors, including dietary components and ethanol (EtOH), which can impact intestinal health. Previous studies showed that different types of dietary fats can modulate EtOH-induced changes in the intestine; however, mechanisms underlying these effects are not completely understood. Here, we examined intestinal transcriptional responses to EtOH in WT and transgenic fat-1 mice (which endogenously convert n6 to n3 polyunsaturated fatty acids [PUFAs]) to identify novel genes and pathways involved in EtOH-associated gut pathology and discern the impact of n3 PUFA enrichment. WT and fat-1 mice were chronically fed EtOH, and ileum RNA-seq and bioinformatic analyses were performed. EtOH consumption led to a marked down-regulation of genes encoding digestive and xenobiotic-metabolizing enzymes, and transcription factors involved in developmental processes and tissue regeneration. Compared to WT, fat-1 mice exhibited a markedly plastic transcriptome response to EtOH. Cell death, inflammation, and tuft cell markers were downregulated in fat-1 mice in response to EtOH, while defense responses and PPAR signaling were upregulated. This transcriptional reprogramming may contribute to the beneficial effects of n3 PUFAs on EtOH-induced intestinal pathology. In summary, our study provides a reference dataset of the intestinal mucosa transcriptional responses to chronic EtOH exposure for future hypothesis-driven mechanistic studies.


Assuntos
Caderinas/fisiologia , Gorduras na Dieta/administração & dosagem , Etanol/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Animais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
BMC Pulm Med ; 20(1): 305, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213402

RESUMO

BACKGROUND: As a main line of defense of the respiratory tract, the airway epithelium plays an important role in the pathogenesis of asthma. CDHR3 and EMSY were reported to be expressed in the human airway epithelium. Although previous genome-wide association studies found that the two genes were associated with asthma susceptibility, similar observations have not been made in the Chinese Han population. METHODS: A total of 300 asthma patients and 418 healthy controls unrelated Chinese Han individuals were enrolled. Tag-single nucleotide polymorphisms (Tag-SNPs) were genotyped and the associations between SNPs and asthma risk were analyzed by binary logistic regression analysis. RESULTS: After adjusting for confounding factors, the A allele of rs3847076 in CDHR3 was associated with increased susceptibility to asthma (OR = 1.407, 95% CI: 1.030-1.923). For the EMSY gene, the T alleles of both rs2508746 and rs12278256 were related with decreased susceptibility to asthma (additive model: OR = 0.718, 95% CI: 0.536-0.961; OR = 0.558, 95% CI: 0.332-0.937, respectively). In addition, the GG genotype of rs1892953 showed an association with increased asthma risk under the recessive model (OR = 1.667, 95% CI: 1.104-2.518) and the GATCTGAGT haplotype in EMSY was associated with reduced asthma risk (P = 0.037). CONCLUSIONS: This study identified novel associations of rs3847076 in CDHR3, as well as rs1892953, rs2508746 and rs12278256 in EMSY with adult asthma susceptibility in the Chinese Han population. Our observations suggest that CDHR3 and EMSY may play important roles in the pathogenesis of asthma in Chinese individuals. Further study with larger sample size is needed.


Assuntos
Asma/genética , Caderinas/genética , Células Epiteliais/patologia , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Mucosa Respiratória/patologia , Adulto , Alelos , Povo Asiático , Asma/etnologia , Proteínas Relacionadas a Caderinas , Caderinas/fisiologia , Estudos de Casos e Controles , Suscetibilidade a Doenças , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/fisiologia
19.
J Neurosci ; 40(45): 8652-8668, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33060174

RESUMO

Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.


Assuntos
Caderinas/fisiologia , Morte Celular/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Apoptose/genética , Proteínas Relacionadas a Caderinas , Caderinas/genética , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Eletroencefalografia , Feminino , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso/etiologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Convulsões/etiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
20.
Sci Rep ; 10(1): 17326, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060598

RESUMO

Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell-cell contact. Recent studies have suggested novel signaling roles for "non-junctional" cadherins (NJCads); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.


Assuntos
Caderinas/fisiologia , Movimento Celular/fisiologia , Proteínas de Xenopus/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Caderinas/genética , Mutação , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...